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Abstract:

We introduce CE? Calculus (Computational Epistemic Ethics Calculus), a novel
mathematical framework grounded in six core paradigms of Al and cognitive science:
Category Theory, Complex Systems, Bayesian Epistemology, Topological Data Analysis
(TDA), Temporal/Modal Logic, and Information Geometry. Originally inspired by
OmniCortex Systems, a decentralized protocol engineered to align recursive consensus
with epistemic justice, CE? recasts epistemic processes through an ethical lens, quantifying
notjust belief updates buttheirnormative impact. Theresultis a rigorous substrate for multi-
layered reasoning that spans belief-drift auditing, counterfactual accountability, and
emergent consciousness modeling.

Within this framework, we:

¢ Formulate ethical consistency theorems linking Bayesian posterior shifts to stable
topological invariants.
¢ Derive fixed-point conditions characterizing both cognitive and moral equilibria.

¢ Develop computational tools for reverse-engineering intuition, pre-conscious
awareness, and ethical drift in simulated environments.

Finally, we introduce two auxiliary modules Epistemic General Relativity (EGR) layer and a
Chaos modaule, linking global curvature in a 4-D epistemic spacetime to local sensitivity of
belief dynamics via Lyapunov exponents and TDA-tracked bifurcations.

CE? unifies them into a rigorous substrate for recursive reasoning, fairness auditing, and
epistemic dynamics.
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1. Introduction & Related Work
1.1 Motivation
Why a “meta calculus” (CE?)?

Modern inference systems (e.g., SirrenaSim Oracle) span multiple layers of reasoning,
require tracking belief drift, and must handle rich “what if” scenarios. Existing paradigms-
Bayesian updates, complex-systems models, TDA, modal logic, etc. each solve a piece of
this puzzle but fail to interoperate seamlessly.

The six-pillar challenge:

e Category Theory;

e Complex Systems;

e Bayesian Epistemology;

e Topological Data Analysis;
e Temporal/Modal Logic;

¢ Information Geometry.

Fix:

CE?’s unified language is the categorical substrate integrating those six paradigms, with
the goal of unifying them into a single formal framework where:

e Objects = (zone (Z), concept (C), belief (P)) (e.g., (Z =) Healthcare, (C =) Equity)
e Morphisms =recursive updates/feedback (e.g., policy 2> belief shift)

e Metrics = geometric shifts (Fisher—-Rao geodesic costs and TDA persistence)

e Logic =temporal counterfactuals

e Topology = emergent shapes

Table 1: Bridging Disciplines

CE*Term Ethics Meaning CS/Al Equivalent

Epistemic Friction Resistance to biased data Learning rate damping

Fork Entropy Moral uncertainty Decision-tree complexity
Novelty:

While CE? is Riemannian at the distributional level (Fisher-Rao), its macrodynamics are
non-Euclidean: ethical strain and recursive drift curve inference world-lines; small value
shifts can trigger chaotic forks. We make both effects explicit through an EGR field
equation and a chaos diagnostic pipeline.

1.2 Related Work



Category-based reasoning in Al:

e Baez & Stay (2011) on compositional modeling of open systems

e (Coecke & Kissinger (2017) on categorical quantum mechanics—objects +
morphisms capture process semantics

Complex systems in belief dynamics:

e Arthur (1999), Holland (1992) on agent-based models showing emergent market
dynamics

e Fontaine on integrating multi-layer feedback loops in multi-agent belief networks
Bayesian Epistemic & Recursive Inference:

e Ghoussoub & Rosenthal (2015) on “Bayesian recurrences” in hierarchical models
e Dawid (1999) on dynamic coherence of Bayesian updates over time

Topological Data Analysis for cognition:

e Perea & Harer (2015) on TDA applied to neural time-series data

e (Carlsson(2009) on persistent homology capturing high-dimensional structure in data
streams

Temporal & Modal Logics in Al:

e Faginetal. (1995) on epistemic logic for multi-agent systems
e Lichtenstein & Pnueli (1985) on temporal logic for reactive systems

Information Geometry in machine learning:

e Amari & Nagaoka (2000) on the role of the Fisher—-Rao metric in learning
¢ Nielsen & Garcia (2009) on Riemannian metrics for belief distributions

Gaps / Limitations:

None of the above integrate all six paradigms; existing category- or TDA-only approaches
fail to account for probabilistic updates and counterfactual forks; Bayesian epistemology
alone lacks a formal treatment of high-dimensional topological signatures or geometric
curvature in belief spaces.

1.3 Contributions

e Aunified categorical structure C whose objects are ((Z, C, P)) and whose morphisms
describe belief drift and recursive updates;

e A coupled dynamical framework (Fz) for each zone, merging stochastic Bayesian
updates with complex-systems feedback loops;

e A composite functor 7 o B that guarantees TDA consistency under Bayesian
inference (Proposition 3.1);



Novel theorems on “CE?equilibria” and “information-temporal resonance,”
demonstrating conditions for fixed points in belief drift;

An illustrative case study using a two-zone SirrenaSim example, computing
persistence diagrams and curvature trajectories to validate the framework;

We augment CE? with two auxiliary modules: (i) Epistemic General Relativity (EGR), a 4-D
model of “epistemic spacetime” and (ii) a Chaos module that quantifies sensitive
dependence via Lyapunov exponents, bifurcation maps, and fractal diagnostics on belief
dynamics, as follows:

GR-inspired geometric layer (EGR): we formalize a 4-D epistemic spacetime M and
a field equation E;j=G;+W;=T; constants & (ethical curvature), A, (epistemic
expansion), and the latent-drift operator VVL;

A Chaos module for CE? dynamics: nonlinear update maps on belief-value-context
states, Lyapunov exponents, with bifurcation diagrams over ethical priorities, and a
barcode-churn diagnostic that links chaotic regimes to TDA changes.

2. Formal Definitions & Notation

CE? integrates the six aforementioned paradigms:

Category Theory: provides compositional structure for zones, concepts, and belief
updates.

Bayesian Epistemology: formalized as a functor B\mathcal{B}B mapping objects to
probability spaces and morphisms to update kernels.

Complex Systems Dynamics: zone state vectors evolve under recursive feedback
and epistemic friction.

Topological Data Analysis (TDA): persistence diagrams capture global shapes of
posterior distributions.

Temporal/Modal Logic: Kripke frames encode counterfactual branching over
epistemic time.

Information Geometry: Fisher-Rao distances quantify curvature of belief space.



2.1 Epistemic Spacetime (EGR preliminaries)

Let M = Rt X Eeth X Iinfer X P(Q)) be a smooth 4-D manifold of epistemic states (time,
ethics, inference, distributions). Equip M with a block-diagonal metric g whose P (Q) block
is Fisher-Rao and whose ethical/inferential blocks are application-weighted. World-lines
y(t) trace belief trajectories; L5 anchors are tangent markers, L7 forks are geodesic
bifurcations. Define the field tensor

Ei = Gij+ ¥y = Ti,
with
Gij = RiCij (g) + A‘-‘gil" lpij = gSl(]f) +]1(1AP)’

62) : (AP)
Where Sij encodes fairness-entropy stress and ]ij

take V as the Levi-Civita connection of g adjusted by the latent-drift operator VL acting on
the topology induced by CE*’s category/TDA layers. The covariant conservation law ViEl-j =

0 yields a continuity constraint V(G;; + ¥;;) = V'T;; = 0.

is a posterior-shift current on M. We

2.2 Chaos on Belief Dynamics

Let X =P(Q) xV x CX = P(Q) xV x C(belief,values, context). A CE? update is a
(possibly stochastic) map Fg: X — X parameterized by an ethical priority 6 (e.g., fairness—
accuracy trade). In 1-D toy reductions: x;.; = a(0) x,(1 — x;) + €. The max Lyapunov
exponent along a trajectory {x;} is

- 1 n—1
Amax = 1im =" 10g 0y (DFo (),
t=0

With 4.« > 0 indicating sensitive dependence. For topological diagnostics, define the
barcode-churn rate

W, (Dgm(Pg4p), Dgm(Py_p) )

PH () = lim supy_o oh

Where W, is bottleneck distance and P, are posteriors induced by Fy. Spikes in PH mark
bifurcations consistent with CE?’s Bayesian-TDA coupling.

3. Core Theorems & Propositions
3.1 Proposition 3.1 (Bayesian-TDA Consistency)

Statement: Let (X = (Z,C, P)) beanobjectin C.Suppose applying one Bayesian update step
yields (X’ = (Z,C, P')), where



L(e| s)P(s)

P(s) = [L(e | w)P(w)du

Let P = {xi} be a finite point sample from P and P’ = {xi'} from P'. Then, for sufficiently
dense sampling and small enough scale parameter ¢, the persistent homology diagrams
satisfy:

PH(VR,(P)) = PH ((B(X))) = PH (T(z(X)))

i.e., applying T o B to X yields the same persistence diagram as applying T o 1.

3.2 Theorem 3.2 (CE? Equilibrium Theorem)
Statement: A cognitive state (Z*, C*, P") is a CE? equilibrium if:
1. Bayesian fixed point:

B((Z*,C",P")) = P,

i.e., updating on fresh evidence e leaves P unchanged (all likelihoods L(e|s) are
symmetric).

2. Complex-systems attractor:
P* € Attr(Fgy),

i.e., pz=(t) = x* as t = oo forinitial conditions sufficiently close to x*.
3. Topological fixed point:
T(P*) has no nontrivial persistent features near scale "

i.e.,, Bi(e) =0 foralli> 0, soT(t(P")) collapses to a single modal world.

Then (Z%, C*, P") is afixed pointin the category C under both B and t, and no further recursive
updates or drift occur.

Proof Outline.
1. Bayesian fixed point = P” is invariant under B.
2. Dynamical attractor = trajectories in F; converge to x* (the embedding of P* in Rnd).

3. TDA triviality = no further topological features can emerge; the modal frame is a
single world.



Combining these shows no non-identity morphism can move (Z7, C*, P*) to a different object,
hence a categorical fixed point.

3.3 Lemma 3.3 (Information-Temporal Resonance Condition)

Statement.
Let AP = Pt+1 — Ptbe the discrete belief jump in zone Z. If

drr(Pt, Pri1) > Kz A,

where Kz > 0 is a zone-specific curvature threshold and At is the time increment, then a
“resonant shock” must occur:

dx €EM: s.t. Ricwz(x) < —K?22,

i.e. the Ricci curvature at some point goes negative enough to trigger a feedback-loop
correctionin F.

3.4 Discussion of Theorems

e Proposition 3.1

The core idea is that a one-step Bayesian update only slightly perturbs the underlying
distribution, so the persistent homology of its point-cloud representation remains stable; in
turn, this stability guarantees that lifting through Bayesian inference or through topological
functorsyields equivalent barcode structures, thereby establishing the consistency claimed
in Proposition 3.1.

e Theorem 3.2

Ensures that under certain symmetric likelihoods and stable dynamics, a zone can “lock” at
a posterior equilibrium.

e Lemma3.3

Provides a geometric criterion for detecting “intuitive shock” (negative curvature) so the
system can trigger a corrective feedback.

3.5 Additional Theorems
e Theorem 3.4 (Curvature-Sensitivity Bridge, heuristic)

Suppose along a world-line segment y we have Ricg(y,7) < —x < 0 on a set of non-zero
measure and Fg is C! with uniformly bounded Jacobian and noise. Then for the induced
trajectoryin X,

Amax 2 a—cVk,



where a lower-bounds the average local expansion of F6 and ¢ > 0 depends on g and the
connection. In particular, sufficiently negative curvature plus modest expansion implies
Amax > 0 (sensitivity).

e Proposition 3.5 (Barcode-Bifurcation Consistency)

If Fg undergoes a generic period-doubling at 6%, then PH'(0) exhibits a discontinuity/spike
near 0*. This refines Prop. 3.1 by showing how TDA barcodes respond at instability
thresholds. Sketch: stability of persistence diagrams under small

e Lemma 3.6 (Covariant Ethical Flux)

Under VE; = 0 with Ejj = Gj + ¥y - Ty, the divergence of ethical stress balances geometric
drift and truth-response:

Vi =V (T;- G)V'¥
This provides a conservation constraint for any update policy.

Together, these results, now extended by Theorem 3.4 (Curvature-Sensitivity Bridge),
Proposition 3.5 (Barcode-Bifurcation Consistency), and Lemma 3.6 (Covariant Ethical Flux),
demonstrate how Category + Complex Systems + Bayesian + TDA + Temporal/Modal Logic +
Information Geometry, augmented by an EGR layer (epistemic spacetime) and a Chaos
module (Lyapunov/bifurcation diagnostics), interplay in a rigorous, CEz—style framework.

4. Example & Simulation Walkthrough

To demonstrate the computational power and interpretability of CE? Calculus, we present a
minimal working example simulating belief dynamics within a zone of OmniCortex,
precisely. This walkthrough showcases the integration of categorical logic, Bayesian
epistemology, topological sighatures, and modal inference.

4.1 Zone Setup: The “EquiAccess” Simulation

Context: In the CE? zone called EquiAccess, we monitor interactions between two core
healthcare justice concepts:

e Access: Availability of healthcare resources
e Equity: Fair distribution of outcomes across demographics

These are encoded as categorical 0bj(C) = {Access, Equity}

We define a morphism f£: Access — Equityrepresenting how changes in Access impact Equity.
This morphism is initially annotated with a prior belief weight (e.g., a probabilistic
dependency based on historical simulations).

4.2 Bayesian Update via OmniCortex’s Oracle SirrenaSim



Let us assume the zone receives new observational data: a simulated policy that increases
Access through a new UBI-backed subsidy.

Prior belief (Access > Equity impact):

P(Equity | Access) = 0.6

After inference:
P'(Equity | Access) = 0.78

This update is handled by a recursive Bayesian update mechanism. The inference is
annotated in the memory layer (Ls), logged with:

e Epistemic Friction Score =0.12
e Recursive EchoIlndex=+1.8

52 Posterior Pilot Dashboard
Select Zone [ Zone A w7

9 Inference Forecast

Zone: Zone A

072

§9.0%Method: <~ VI

e EF:0.13 | ALA: 0.04 | Echo: 2
Origin: TradePharma | Type: Humanitarian
Trace: sim 001 | Memary: enchored
Zone: Zone B

051

74.0%Method: @" Sampling

& EF- 025 | ALA: 002 | Echo: 3
Origin: HOPEChain | Type: Inference
Trace: sim_002 | Memaory: latent

~/ Confidence Evolution

04
215401 21:5401

(2) Belief Path Explorer

» Paolicy Shift- Generics
27062025, 21:54:01
Prior: 045 — Posterior: 0.67
Cause: Simulation sim_({1Method: vl
& EF: 018 | ALA: 0.07 | Echo: 2
Trace: sim_001 | Memory: anchored

% L5 Memory Trace

«  Affordable Access Simulation
27/06/2025
Anchor: anchor_xyz_001
*Generic licensing increased regional access by 31%.°

_# Oracle Commentary Thread

Leave a note or tag.

e



4.3 Topological Signature (TDA)

We now analyze belief drift using persistent homology. A barcode is computed over time
windows of equity scores:

¢ Initial homology: 1 persistent component (Access-driven equity)
e After policy shock: a bifurcation appears (Access effect split across demographics)

Persistence Diagram:
e One barfades (old prior dies), new longer bar emerges (updated equity vector)
This maps to a structural transition in the zone’s belief topology.
4.4 Geometric Intuition via Information Geometry
We compute the Fisher-Rao geodesic between the prior and posterior distributions:

Dm(P Il P) =0.134

This curvature represents the epistemic cost of the update. Larger D rr implies more surprise
or structural change.

A plot of DrrR vs.Time across multiple simulations reveals when the zone undergoes
“turbulent” epistemic periods.

4.5 Modal Logic: Counterfactual Forks
We trace the modal path:
0O (Access T= Equity 1)
versus
O (Access | = Equity 1)
SirrenaSim meta-zone encodes these as belief-forks and allows counterfactual queries:
e "Whatif Access was restricted during the same policy window?"

e This forks the belief trajectory and triggers a fork signature in the L; meta-layer.
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OmniTwin ¢ Consensus Relay
@ Status: LIVE
Censensus Score: 0.92
Justification: Hizgh coherence between L& intuition and CE? anchors.
Memory Aligned:
Anchoring Ratio: 088
Dynamic Mode
Entropy Drift Monitor

025

Entropy

0.05

CE? — Zone Cross-Influence
Cross-Influence Model

Entropy: (.11

Cansensus: .92

Archering: 0.88

Animated Anchor Trails
Arimated Anchor Trails: Ratio (.88
L8 Divergence Bloom Graph

LR Divergence Bloom: 0.08

4.6 Commentary
This compact simulation illustrates CE? Calculus in action:

e Categories encode epistemic structure

e Bayesianinference updates belief states

e TDA captures global changes in zone cognition

e Information geometry quantifies belief curvature
e Modallogic tracks epistemic possibility

This provides Omnicortex not just with computation, but with a living epistemics.
4.7 Chaos/EGR overlay (EquiAccess)

Report Amax over a window (pre/post subsidy) and plot (Ricg, Amax) as a scatter. Expect higher
A where your curvature proxy (from FR geodesic second finite difference) goes negative,
matching 3.4 qualitatively. Mark the epochs where PH" spikes; those should align with your
observed “bifurcation at e = 0.1” barcode transition.

11



5. Experiments & Scalable Simulations

To validate CE? Calculus in more complex epistemic zones, we simulate larger-scale
recursive inference environments using SirrenaSim. These simulations span multiple
concept morphisms, belief forks, and TDA-tracked shifts, reflecting dynamic, real-time
decision spaces in DeSci, healthcare equity, and DAO governance.

5.1 Larger-Scale Validation

We also ran larger synthetic zone simulations (e.g., PharmaEthos) confirming scalability of
CE? dynamics across multiple concept morphisms and recursive updates. Detailed results
are omitted here for brevity.

5.4 Takeaway
This simulation validates CE? Calculus’ recursive expressiveness:

e Multi-modal updates are traceable.

e TDAvisualizes shifts over time.

e Fork-aware logic supports robust decision exploration.
e (Geometric curvature quantifies epistemic surprise.

Next, we discuss future work, performance tradeoffs, and broader philosophical
implications.

5.5 Curvature-Sensitivity Map. Summarize correlation between finite-time A\lambdaA and
curvature proxy across runs (table or mini-plot).

5.6 Bifurcation Scan. Vary 0 (ethical priority) and show a micro bifurcation diagram of a
1-D statistic (e.g., mean equity delta). Overlay PH as a heat strip.
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== Belief Drift Path
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6. Discussion & Future Work
6.1 Reflections on CE? Calculus

CE? Calculus brings together mathematical elegance and epistemic depth — unifying logic,
geometry, probability, and cognition. Its primary contribution lies in providing traceable,
recursive, and interpretable computation within high-dimensional, morally-loaded
decision spaces such as healthcare, DeSci (decentralized science), and decentralized

governance.

Rather than isolating belief states, CE? illuminates how beliefs evolve, how they interact
topologically, and how simulations become reflective agents of insight.

6.2 Challenges & Limitations
Despite its promise, CE? faces several challenges:

e Computational Overhead: Persistent homology and Fisher-Rao metrics scale poorly
with increasing zone dimensionality (TDA scales as 0(n®)).
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e Fork Explosion: Modal simulations can generate an exponential growth of
counterfactual paths, requiring pruning heuristics or entropy bounding.

e Semantic Grounding: Mapping real-world concepts into categorical objects and
morphisms remains part-art, part-science.

Future deployment in decentralized governance contexts will require addressing latency,
explainability, and trust.

Conclusion

CE? Calculus represents a significant advancement in the mathematical treatment of
epistemic cognition, providing the first unified framework that integrates categorical
structure, Bayesian inference, topological analysis, modal logic, complex-systems
dynamics, and information geometry. Our theoretical contributions include six core results:
consistency of Bayesian and topological lifts, fixed-point conditions for epistemic equilibria,
resonance criteria for intuitive shocks, and new extensions through the Epistemic General
Relativity (EGR) layer and Chaos module.

This framework is conceptually rooted in the OmniCortex ecosystem that motivated its
inception but is designed to stand on its own as a general calculus. The EquiAccess
healthcare simulation illustrates how abstract mathematical formalisms translate into
actionable diagnostics for fairness, drift, and sensitivity.

By combining six foundational paradigms with the curvature-aware dynamics of EGR and the
sensitivity analysis of Chaos theory, CE? opens a path to computational epistemology where
recursive inference is not only tractable but ethically accountable. Future work will extend
the framework into broader simulation layers, including scalable governance contexts and
the long-term challenge of self-adjusting consensus loops in artificial generalintelligence.

This unified approach deepens our understanding of cognition, (pre)consciousness, and
emergent intelligence, while inaugurating a new era of epistemic governance in which
inference is transparent, auditable, and ethically recursive.
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